姓名: | 邓琪 |
最后学位: | |
职称: | 助理教授/讲师 |
公共职务: | |
导师岗位: | 无 |
办公室: | 609 |
电话: | 02165908167 |
Email: | [email protected] |
邓琪 上海财经大学信息管理学院助理教授,本科毕业于上海交通大学计算机系,博士毕业于佛罗里达大学计算机信息科学工程系,研究兴趣是大数据相关方面的算法软件开发,凸优化和非凸优化在机器学习和运筹管理的应用。
科学计算
科研项目
教育和工作经历
Leaves Optimization Solver Platform http://leaves.shufe.edu.cn
1. D. Boob, Q. Deng, G. Lan, Y. Wang, A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained Optimization, NeurIPS 2020
2. Q. Deng and L. Lan, Efficiency of Coordinate Descent Methods For Structured Nonconvex Optimization, ECML 2020
3. Q. Deng, J. Gao, D. Ge, S. He, B. Jiang, X. Li, Z. Wang, C. Yang, Y. Ye, A Survey on Modern Optimization Theory and Applications, Science China Mathematics, 2020 (in Chinese)
4. D. Boob, Q. Deng and G. Lan, Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization, in submission.
5. Q. Deng, Yi Cheng, Guanghui Lan, Optimal Adaptive and Accelerated Stochastic Gradient Descent,in submission.
6. Q. Deng, G. Lan and A. Rangara jan. Randomized block subgradient methods for convex nonsmooth and stochastic optimization, arXiv preprint. in submission.
7. Y. Tan, A. Paul, Q. Deng, L. Wei. Mitigating Inventory Overstocking: Optimal Order‐up‐to Level to Achieve a Target Fill Rate over a Finite Horizon. In Production and Operations Management 2017
8. Q. Deng, J. Ho and A. Rangara jan. Stochastic Coordinate Descent for Nonsmooth Convex Optimization. In Optimization for Machine Learning Workshop, NIPS 2013.
9. Biswas, D. Thompson, W. He, Q. Deng, C.M. Chen, H.W. Shen, R. Machiraju, and A. Rangarajan. An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity. PacicVis 2015
10. L. Zhang, Q. Deng. R. Machiraju, A. Rangarajan, D. Thompson, D.K. Walters and H.W. Shen. Boosting Techniques for Physics-Based Vortex Detection, Computer Graphics Forum, 33(1):282-293, 2014
荣誉奖励